Maximum Sum Circular Subarray
Problem Statement - link #
Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].
A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], …, nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.
Examples #
Example 1:
Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.
Constraints #
n == nums.length
1 <= n <= 3 * 10^4
-3 * 10^4 <= nums[i] <= 3 * 10^4
Solutions #
class Solution {
public:
int maxSubarraySum(vector<int>& nums) {
int curSum=nums[0], resSum=nums[0];
for( int i=1; i<nums.size(); i++ ) {
curSum = max( nums[i], curSum+nums[i] );
resSum = max( resSum, curSum );
}
return resSum;
}
int maxSubarraySumCircular(vector<int>& nums) {
int linearRes = maxSubarraySum(nums);
if( linearRes < 0 )
return linearRes;
int totalSum = 0;
for(int &n: nums){
totalSum += n;
n *= -1;
}
int circularRes = totalSum + maxSubarraySum(nums);
return max( linearRes, circularRes );
}
};