Foldable Binary Tree
Problem Statement - link #
Given a binary tree, check if the tree can be folded or not. A tree can be folded if left and right subtrees of the tree are structure wise same. An empty tree is considered as foldable. Consider the below trees: (a) and (b) can be folded. (c) and (d) cannot be folded.
(a)
10
/ \
7 15
\ /
9 11
(b)
10
/ \
7 15
/ \
9 11
(c)
10
/ \
7 15
/ /
5 11
(d)
10
/ \
7 15
/ \ /
9 10 12
Your Task: The task is to complete the function isFoldable()
that takes root of the tree as input and returns true or false depending upon whether the tree is foldable or not.
Expected Time Complexity: O(N)
Expected Auxiliary Space: O(h)
Examples #
Example 1:
Input:
10
/ \
7 15
/ \ / \
5 N 11 N
Output: No
Example 2:
Input:
10
/ \
7 15
/ \ / \
N 9 11 N
Output:Yes
Constraints #
0 <= Number of nodes <= 10^3
1 <= data <= 10^4
Solutions #
bool isSym(Node* l, Node* r){
if(!l || !r) return l==r;
return isSym(l->left,r->right)&&isSym(l->right,r->left);
}
//Function to check whether a binary tree is foldable or not.
bool IsFoldable(Node* root)
{
// Your code goes here
if(!root) return true;
return isSym(root->left, root->right);
}