Minimum Path Sum
Problem Statement - link #
Given a m x n
grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Examples #
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints #
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
Solutions #
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(i==0 and j>0)
grid[i][j]+=grid[i][j-1];
else if(j==0 and i>0)
grid[i][j]+=grid[i-1][j];
else if(i>0 && j>0)
grid[i][j] += min(grid[i-1][j],grid[i][j-1]);
}
}
return grid[m-1][n-1];
}
};