Path Sum III
Problem Statement - link #
Given the root
of a binary tree and an integer targetSum
, return the number of paths where the sum of the values along the path equals targetSum
.
The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).
Examples #
Example 1:
Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
Output: 3
Explanation: The paths that sum to 8 are shown.
Example 2:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: 3
Constraints #
- The number of nodes in the tree is in the range
[0, 1000]
. -10^9 <= Node.val <= 10^9
-1000 <= targetSum <= 1000
Solutions #
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rc(TreeNode* root,int sum,int target){
if(!root) return 0;
sum += root->val;
return (sum==target) + rc(root->left,sum,target) + rc(root->right,sum,target);
}
int pathSum(TreeNode* root, int targetSum) {
if(!root) return 0;
return rc(root,0,targetSum) + pathSum(root->left,targetSum) + pathSum(root->right,targetSum);
}
};